The "soft" analytic tools that comprise the field of computational intelligence have matured to the extent that they can, often in powerful combination with one another, form the foundation for a variety of solutions suitable for use by domain experts without extensive programming experience.

Computational Intelligence: Concepts to Implementations provides the conceptual and practical knowledge necessary to develop solutions of this kind. Focusing on evolutionary computation, neural networks, and fuzzy logic, the authors have constructed an approach to thinking about and working with computational intelligence that has, in their extensive experience, proved highly effective.

Features

- Moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific concepts and paradigms that inform the authors' methodologies.
- Explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation.
- Details the metrics and analytical tools needed to assess the performance of computational intelligence tools.
- Concludes with a series of case studies that illustrate a wide range of successful applications.
- Presents code examples in C and C++.
- Provides, at the end of each chapter, review questions and exercises suitable for graduate students, as well as researchers and practitioners engaged in self-study.
- Makes available, on a companion website, a number of software implementations that can be adapted for real-world applications.

About the Authors

Russell Eberhart is Professor of Electrical and Computer Engineering at Purdue School of Engineering and Technology, and Vice President of Computelligence LLC, in Indianapolis. He and Yuhui Shi are co-authors with Jim Kennedy of *Swarm Intelligence* (Morgan Kaufmann, 2001). Yuhui Shi is an Embedded System Specialist for Electronic Data Systems, Inc. He is an associate editor of the IEEE Transactions on Evolutionary Computation.

Order from Morgan Kaufmann Publishers

and receive 20% off! Please refer to code 80810.

Mail: Elsevier Science, Order Fulfillment, 11830 Westline Industrial Dr., St. Louis, MO 63146

Email: usbkinfo@elsevier.com • Visit Morgan Kaufmann on the Web: www.mkp.com
Table of Contents

PREFACE
Overview
Organization of the Book
Our Approach: What This Book Is, and Is Not, About
Our Approach
The Web Site for the Book
Acknowledgments

CHAPTER 1 - FOUNDATIONS
Definitions
Biological Basis for Neural Networks
Biological Basis for Evolutionary Computation
Chromosomes
Biological versus Artificial Chromosomes
Behavioral Motivations for Fuzzy Logic
Myths About Computational Intelligence
Computational Intelligence Application Areas
Summary
Exercises

CHAPTER 2 - COMPUTATIONAL INTELLIGENCE
Adaptation
Self-Organization and Evolution
Historical Views of Computational Intelligence
Computational Intelligence as Adaptation and Self-Organization
The Ability to Generalize
Computational Intelligence and Soft Computing Versus Artificial Intelligence and Hard Computing
Summary
Exercises

CHAPTER 3 - EVOLUTIONARY COMPUTATION CONCEPTS AND PARADIGMS
Evolutionary Computation History
Evolutionary Computation Overview
Genetic Algorithms
Overview of Evolutionary Programming
Evolution Strategies
Genetic Programming
Particle Swarm Optimization
Summary
Exercises

CHAPTER 4 - EVOLUTIONARY COMPUTATION IMPLEMENTATION
Implementation Issues
Genetic Algorithm Implementation
Particle Swarm Optimization Implementation
Summary
Exercises

CHAPTER 5 - NEURAL NETWORK CONCEPTS AND PARADIGMS
Neural Network History
What Neural Networks Are and Why They Are Useful
Neural Networks Components and Terminology
Neural Network Topologies
Neural Network Adaptation
Comparing Neural Networks and Other Information Processing Methods
Preprocessing
Postprocessing
Summary
Exercises

CHAPTER 6 - NEURAL NETWORK IMPLEMENTATIONS
Implementation Issues
Back-Propagation Implementation
The Kohonen Network Implementations
Evolutionary Back-Propagation Network Implementation
Summary
Exercises

CHAPTER 7 - FUZZY SYSTEMS CONCEPTS AND PARADIGMS
History
Fuzzy Sets and Fuzzy Logic
The Theory of Fuzzy Sets
Approximate Reasoning
Developing a Fuzzy Controller
Summary
Exercises

CHAPTER 8 - FUZZY SYSTEMS IMPLEMENTATIONS
Implementation Issues
Fuzzy Rule System Implementation
Evolving Fuzzy Rule Systems
Summary
Exercises

CHAPTER 9 - COMPUTATIONAL INTELLIGENCE IMPLEMENTATIONS
Implementation Issues
Fuzzy Evolutionary Fuzzy Rule System Implementation
Choosing the Best Tools
An Example: Applying Computational Intelligence to Data Mining Summary
Exercises

CHAPTER 10 - PERFORMANCE METRICS
General Issues
Percent Correct
Average Sum-Squared Error
Absolute Error
Normalized Error
Evolutionary Algorithm Effectiveness Metrics
Mann-Whiney U Test
Receiver Operating Characteristics Curves
Recall and Precision
Other ROC-Related Measures
Confusion Matrices
Chi-Square Test
Summary
Exercises

CHAPTER 11 - ANALYSIS AND EXPLANATION
Sensitivity Analysis
Hinton Diagrams
Computational Intelligence Tools for Explanation Facilities
Summary
Exercises

CHAPTER 12 - CASE STUDY SUMMARIES
Detection of Electroencephalogram Spikes
Determining Battery State of Change
Schedule Optimization
Control System Design
Summary
Exercises

REFERENCES
GLOSSARY